

shapes of molecules	polarity of molecules	solubility of ionic solid in water	insolubility of ionic solid in cyclohexane
<p>around the central atom</p> <p># of regions of electron density</p> <p>repel - for maximum separation / to minimise repulsion</p> <p>into electron geometry</p> <p>with bond angle°</p> <p># bonding and # nonbonding regions</p> <p>leads to molecular shape</p> <p>Electron geometry & bond angles</p> <ul style="list-style-type: none"> Linear 180° Trigonal planar 120° Tetrahedral 109° <p>Molecular shapes</p> <ul style="list-style-type: none"> Bent (120° or 109°) depending on the electron geometry Trigonal planar Trigonal pyramidal Tetrahedral 	<p>X-Y bond is polar</p> <p>different atoms have different EN / X is more / less EN than Y</p> <p>bond is / has a dipole</p> <p>dipoles are the same / different</p> <p>dipoles are arranged symmetrically / asymmetrically around central atom</p> <p>dipoles cancel out / don't cancel out so molecule is nonpolar / polar overall</p> <p>Electronegativity (EN)</p> <ul style="list-style-type: none"> X-X nonpolar bond (identical atoms) X-Y and X-Z polar bonds; dipoles are different as Y and Z have different EN EN increases from left to right across a period AND EN decreases going down a group some EN that are useful to remember: $F > O > N \approx Cl > S \approx C > P \approx H$ where F is most EN 	<p>water is polar</p> <p>+ve H ends attracted to -ve ions</p> <p>-ve O ends attracted to +ve ions</p> <p>attraction sufficient to overcome solute-solute attraction between +ve and -ve ions</p> <p>ions removed from lattice</p> <p>ionic solid <u>can dissolve</u></p>	<p>cyclohexane is nonpolar</p> <p>attractive forces formed with ions in ionic lattice are NOT strong enough to overcome strong ionic bonds</p> <p>ionic solid <u>will not dissolve</u></p>
		<p>to dissolve any substance the new solute-solvent attractions must form strong enough attractions to overcome the existing solute-solute and solvent-solvent attractions</p>	<p>to dissolve any substance the new solute-solvent attractions must form strong enough attractions to overcome the existing solute-solute and solvent-solvent attractions</p>

nonpolar solid insol. in H ₂ O / sol. in cyclohexane	low m.pt. and b.pt. of molecular solids	electrical conductivity of molecular solid	electrical conductivity of ionic solids
<p>to dissolve, need to overcome existing solute-solute and solvent-solvent attractions</p> <p><u>water is polar solvent</u></p> <p>attractive forces of nonpolar solid with water are weaker than existing attractive forces <u>within each substance</u></p> <p>nonpolar solid does NOT dissolve in water</p> <p>WHEREAS</p> <p>cyclohexane is <u>nonpolar solvent</u></p> <p>solute and solvent are both non-polar molecules</p> <p>attractive forces formed between particles are strong enough to overcome the existing attractive forces <u>within each substance</u></p> <p>nonpolar solid can dissolve in cyclohexane</p>	<p>molecular solid</p> <p>weak intermolecular attractions between molecules</p> <p>little heat energy is required to overcome these attractions</p> <p>therefore low m.pt. / b.pt.</p>	<p>mobile charged particles required for electrical conductivity</p> <p>molecular solid</p> <p>weak intermolecular attractions between molecules</p> <p>no free moving charged particles (no ions or electrons)</p> <p><u>unable</u> to conduct electricity in any state</p>	<p>mobile charged particles required for electrical conductivity</p> <p>(3D lattice of) alternating cations and anions</p> <p>held together by (strong) ionic bond</p> <p>molten and/or aqueous: now ions can move and can pass electric current</p>
	<p>brittleness of ionic solids</p> <p>(3D lattice of) alternating cations and anions</p> <p>held together by (strong) ionic bond</p> <p>if a force is applied</p> <p>ions with same charge are brought next to each other</p> <p>like charges repel</p> <p>shatters the structure</p>	<p>electrical conductivity of diamond and silicon dioxide</p> <p>mobile charged particles required for electrical conductivity</p> <p>covalent network substance</p> <p>3-D lattice of atoms covalently bonded in a tetrahedral arrangement</p> <p>no charged particles free to move</p> <p>so <u>unable</u> to conduct electricity.</p>	<p>electrical conductivity of graphite</p> <p>mobile charged particles required for electrical conductivity</p> <p>covalent network substance</p> <p>each C atom bonded to 3 other carbon atoms in hexagonal layers.</p> <p>one delocalised electron per C atom is mobile</p> <p>able to carry a charge so conducts electricity</p>

Malleability/ductility of metals	High m.pt of metals	Conductivity of metals	High m.pt of ionic solids
<p>(lattice of) metal cations sea of delocalised electrons held together by (strong) metallic bond bond is nondirectional bonding electrons delocalised across the lattice if force applied, particles can move past each other without disrupting the bonding</p>	<p>metallic solid (lattice of) metal cations in sea of delocalised electrons held together by (strong) metallic bonds lot of heat energy is required to break these bonds therefore high m.pt.</p>	<p>mobile charged particles required for electrical conductivity (lattice of) metal cations in sea of delocalised electrons delocalised electrons can move allows metals to conduct electricity in any state</p>	<p>ionic solid (3D lattice of) alternating cations and anions held together by (strong) ionic bonds lot of heat energy required to break these bonds therefore high m.pt.</p>

